APPLICATIONS: Dissociated neuronal cultures / Cardiomyocyte cultures / Human stem cell-derived neurons / Acute brain tissue and explanted retina / Organoids / Disease modelling / Drug discovery / Safety studies, long-term and acute toxicology / LTP & LTD protocols / Plasticity & homeostatic studies / Spontaneous & evoked activities (spikes, fEPSP) / Optogenetics-combined studies / Functional and structural connectivity.

BioCAM X

Label-free imaging with high-resolution electrophysiology
4096 x 18kHz

Originating from 3Brain’s expertise gained in the manufacture of the first CMOS high-resolution multielectrode arrays, BioCAM X will boost your research capabilities by enabling simultaneous recordings from a total of 4096 electrodes sampled at 18 kHz per electrode.

You can either choose to store the entire raw signals captured by the BioCAM X or to take advantage of the several available degrees of compression, which will allow you to save space on your hard disk and thus decrease the computational resources required for further data processing.

All-in-one

BioCAM X incorporates further optional functionalities in a compact and solid design, which for most MEA systems come shipped as separate modules, such as a temperature control system and an electrical programmable current-driven stimulator.

Its compact form factor eases integration with other instrumentation, such as microscopes, perfusion and patch-clamp systems.

Thanks to its improved interface, BioCAM X can be controlled with a laptop for better mobility, allowing you to carry the entire recording system in your hand luggage.
HD-MEA probes

Whatever your experimental needs with multi-electrode arrays are, BioCAM X can satisfy them!

Its high sampling frequency and a user-selectable recording bandwidth make the system suitable for recording any kind of electrophysiological signal, from slow field potentials to single action potentials.

The three HD-MEA (high density microelectrode array) probes provide different spatial resolutions and recording areas, allowing full monitoring of electrophysiological signals in a field of view of up to ~26 mm² from a large variety of biological preparations, ranging from cell cultures and organoids to brain slices and explanted retina.

BrainWave

BioCAM X is supplied with the latest version of our BrainWave software, which provides real-time visualisation tools for electrophysiological signals during your experiments and stores all your data in HDF5 format.

This standard (adopted by the International Neuroinformatics Coordination Facility) allows cross-platform compatibility and simplifies access to and from most common analysis environments, such as Matlab® and Python™.
Amplifier

Bandwidth: 0.1 Hz - 20 kHz

Noise: 11 µVrms (0.1 Hz - 20 kHz)

Maximum input-referred signal amplitude: 4 mV

Main Controller

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data resolution</td>
<td>12 bit</td>
</tr>
<tr>
<td># of simultaneous recording sites</td>
<td>4096</td>
</tr>
<tr>
<td>Full-array (4096) maximum sampling rate</td>
<td>18 kHz / electrode</td>
</tr>
<tr>
<td>Region-of-interests</td>
<td>Recording 1 up to 4 independent subsets of electrodes up to 64 kHz</td>
</tr>
<tr>
<td>Temperature control</td>
<td>Active heating and cooling between 34°C and 40°C</td>
</tr>
<tr>
<td>Inputs</td>
<td>Two analog inputs (-3.3 V to 3.3 V) or triggers (LV-TTL)</td>
</tr>
<tr>
<td>Control and data interface</td>
<td>Camera Link (mini SDR)</td>
</tr>
</tbody>
</table>

Technical Specifications

Locking System
Single two-position button for locking/unlocking

Advanced External Case
Crafted from aluminum to make it robust to electromagnetic and mechanical noise

INTEGRATED STIMULATOR

4 independently programmable current stimulator channels

Locking System

Single two-position button for locking/unlocking

Advanced External Case

Crafted from aluminum to make it robust to electromagnetic and mechanical noise
AMPLIFIER

- Bandwidth: 0.1 Hz - 20 kHz
- Noise: 11 µVrms (0.1 Hz - 20 kHz)
- Maximum input-referred signal amplitude: 4 mV

MAIN CONTROLLER

- Data resolution: 12 bit
- Number of simultaneous recording sites: 4096
- Full-array (4096) maximum sampling rate: 18 kHz / electrode
- Temperature control: Active heating and cooling between 34°C and 40°C
- Inputs: Recording 1 up to 4 independent subsets of electrodes up to 64 kHz
- Control and data interface: Camera Link (mini SDR)

STIMULATION MODULE (optional)

- **Stimulation mode**: Constant current
- **Internal stimulation sites**: 16 on-chip (only for HD-MEA Stimulo)
- **External stimulation sites**: 4 differential channels accessible on the rear connector
- **Maximum current**: +/- 1 mA
- **Stimulation patterns**: Up to 4 independent stimulation patterns
- **Stimulus generator**: Programmable patterns (mono/biphasic, burst, jittering, ...)
- **Time resolution**: 10 µs
- **Amplitude resolution**: 10 µA
- **Maximum pulse rate**: 50 kHz
- **Extended inputs**: Three LV-TTL GPIOs

PHYSICAL SPECS

- **Body material**: Anodized aluminum and stainless steel
- **Dimensions (WxDxH)**: 160 x 205 x 38 mm (6.3 x 8.07 x 1.5 inches)
- **Weight**: Approx. 1350 g / 2.98 lb

MAGNETIC PLATE

- To attach magnetic perfusion holders

ANTI-SPILL BARRIER

- To prevent circuitry damage due to liquid overflow

TEMPERATURE CONTROL

- Integrated heating and cooling system
Neuronal cultures grown on HD-MEA are used to investigate fundamental properties of brain processing, to study the physiological and pathological functional activity of cultured models on primary or derived cell-lines and for developing drug-screening or toxicological applications.

Activity maps and representative signal shapes (bars: 100 ms, 100 µV) of network events occurring in two different dissociated culture models. Left: hippocampal neurons from P0 rats at 14 DIVs (courtesy of Ms. Sinem M. Sertel, University Medical Center, Göttingen). Right: embryonic cortex at 24 DIVs (courtesy of Ahmad Allouche, SynAging SAS). Activity maps are images and videos visualising the level of activity occurring on all 4096 electrodes of the BioCAM X system using a false-colour map (red: >0.3 mV; blue: 0 mV).

Human-derived stem cells

Human stem cell-derived neuronal networks are particularly promising tools for improving our understanding of brain pathologies by in vitro disease modelling. Human neuronal cultures on the BioCAM X system have been validated over several months with spontaneous and electrically evoked recordings.

Top: development and maturation of a human-derived neuronal network. Signals increase in amplitude and synchronicity over time. Bottom: trend in the overall network spiking activity on using different adhesion factors to culture the cells on the HD-MEAs (adapted from Amin et al., Front. Neurosci. 2016).
Connectivity Study

Investigate functional connectivity at a cellular scale with the BioCAM X system. Combined with optical imaging, it provides a powerful tool to unravel structure-function relationships in cultures.

Reconstruction of the structural links (red lines) of a neuronal culture grown on an HD-MEA (courtesy of L. Berdondini NetS\(^3\)Lab, Fondazione Istituto Italiano di Tecnologia, Italy).
Brain slices

BioCAM X and its HD-MEAs with 4096 electrodes allow the researcher to visualise both spiking activity and field potential propagation over large brain circuits (up to 26mm²).

Activity map from the 64 by 64 electrode array and examples of the quality of the signals (bars: 100 ms, 100 µV) acquired from a rat cortico-hippocampal slice (left) and a mouse cerebellum tissue (right).

Large brain tissues under control

Monitor spontaneous/evoked activity patterns propagating over different brain regions.

Superimposition of a chemically induced inter-ictal event on the cortico-hippocampal brain circuit (adapted from Ferrea et al., Front. Neural Circuits 2012).
BioCAM X enables the simultaneous monitoring of large areas of neuronal tissue over a long period, thus allowing you to explore the spatial heterogeneity and temporal synchronicity of signals within connected brain areas.

Spatial distribution (right) and temporal occurrences (left) of fast ripples detected in the hippocampus and DG (adapted from F. Ortiz, R. Gutiérrez, SfN 2016).

Focus on details

The HD-MEA’s spatial resolution finely resolves signals coming from dendritic compartments or somatic layers within sub-areas of the circuitry.

Activation of the DG upon stimulation of the perforant path. The different signal shapes recorded by the HD-MEA match the anatomical organisation of the brain area (adapted from Ferrea et al., Front. Neural Circuits 2012).
Retina

Either spontaneous or light-induced activity from the explanted retinas of different animals (e.g. murine, salamander, primates, etc.) can be recorded with the BioCAM X HD-MEA system.

Mouse retina displaced on the HD-MEA. Colour map activity shows ganglion cell activation (on the right signal amplitude examples; bars: 100 ms, 500 µV) and axonal propagation toward the optic disk (courtesy of E. Sernagor and G. Hilgen, The Institute of Neuroscience, Newcastle, UK).

Pan-retinal recording

The spatial extent (from 7.1 to 26.2 mm²) of HD-MEAs allows long range interactions and heterogeneous spatial responses to light stimuli to be investigated over large retinal areas.

Disease-in-a-dish

BioCAM X is the ideal tool to develop in vitro models of severe long-term neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, with increased sensitivity compared to other assays.

Drug discovery

The rescue effects of neuroprotective compounds can be evaluated in label-free assays with unprecedented statistical significance and with a superior sensitivity compared to common cell viability assays.

Evaluation of the rescue effects of neuro-protective compounds. Administration of memantine or saffron at different time points (left: co-administered with Aβ-oligomers; right: administered 26 hours later than Aβ-oligomers) leads to completely different results (adapted from Amin et al., Scientific Reports 2017).
Safety, toxicology and mechanism of action

Understanding the potential targets of molecules, for example in the field of epilepsy, can be performed by BioCAM X in label-free mode, at a micro-scale level and over large brain regions.

The anticonvulsant drug THIP differentially affecting two distinct classes of epileptic events is detected by the BioCAM X system (adapted from Ferrea et al., Front. Neural Circuits 2012).

Long Term Potentiation/Depression

LTP/LTD protocols are routinely used in evaluating memory deficit induced by neurotoxic compounds. BioCAM X allows a large area of interest to be monitored, revealing heterogeneous compound effects with high statistical significance.

Effect of D-AP5 on the LTP of CA1. Compared to the control (upper panel), D-AP5 spatially inhibits potentiation, affecting both the amplitude and spread of the signals (lower panel) (courtesy of A. Ugolini, Aptuit Verona).
Safety studies on cardiac cells

Cardiac drug safety screening is a mandatory step in drug development. BioCAM X and HD-MEAs allow researchers to finely characterise toxic effects, evaluating different parameters such as the contractile period, spike amplitude, duration and propagation velocity.

![Cardiac wave lasting 20 ms propagating over an HD-MEA of 5 x 5 mm²](image)

(Courtesy of L. Berdondini NetS3Lab, Fondazione Istituto Italiano di Tecnologia, Italy)

Toxicology studies on neuronal networks

Aberration of neuronal electrical activity is an early marker of neurotoxicity. Parameters such as the firing rate or network synchronicity (burst activity) can be easily quantified in vitro by BioCAM X to evaluate the potential toxic effects of compounds under study.

![Effect of electrically charged nanoparticles](image)

(Adapted with permission from Dante et al. ACSNano 2017, copyright © 2017 American Chemical Society)
Optogenetics

Combine the precise spatial excitation/inhibition capabilities of optogenetics with the appropriate detection tool: BioCAM X can accurately detect small and local functional changes induced by optogenetic stimulation.

Further BioCAM X uses

Use BioCAM X in other contexts, such as studying progenitors’ integration in cell cultures, performing real-time closed-loop experiments or characterising specific chemical functionalisation of the electrode-neuron interface.

To discuss further possibilities, contact our team of application specialists on 3brain.com.

Precise neuron placement on functionalised platinum electrodes (adapted with permission from Mescola et al. 2016, Langmuir. Copyright 2016 American Chemical Society).
APPLICATIONS

- Dissociated neuronal cultures
- Cardiomyocyte cultures
- Human stem cell-derived neurons
- Acute brain tissue and explanted retina
- Organoids
- Disease modelling
- Drug discovery
- Safety studies, long-term and acute toxicology
- LTP & LTD protocols
- Plasticity & homeostatic studies
- Spontaneous & evoked activities (spikes, fEPSP)
- Optogenetics-combined studies
- Functional and structural connectivity